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ABSTRACT 
An efficient Monte Carlo reliability assessment 

methodology is presented for engineering systems with 
multiple failure regions and potentially multiple most probable 
points. The method can handle implicit, nonlinear limit-state 
functions, with correlated or non-correlated random variables, 
which can be described by any probabilistic distribution. It uses 
a combination of approximate or “accurate-on-demand,” global 
and local metamodels which serve as indicators to determine 
the failure and safe regions. Samples close to limit states define 
transition regions between safe and failure domains. A 
clustering technique identifies all transition regions which can 
be in general disjoint, and local metamodels of the actual limit 
states are generated for each transition region. A Monte Carlo 
simulation calculates the probability of failure using the global 
and local metamodels. A robust maximin “space-filling” 
sampling technique is used to construct the metamodels. Also, a 
principal component analysis addresses the problem 
dimensionality making therefore, the proposed method 
attractive for problems with a large number of random 
variables. Two numerical examples highlight the accuracy and 
efficiency of the method. 
 
INTRODUCTION 

The design of any engineering system requires the 
assurance of its reliability and quality. Variations and 
uncertainties in the inputs and properties of an engineering 
system cause variations in its performance. Uncertainties in the 
system characteristics prevent such assurances from being 
given with absolute certainty. One common approach is to 
quantify the reliability of performance, or risk of failure, in 
probabilistic terms.  

For large-scale systems, the reliability prediction is usually 
based on efficient computational methods. Both analytical and 
simulation-based methods are available. The analytical methods 
are based on the most probable point (MPP) concept. They 
include the well known first-order reliability method (FORM) 
which has been widely used [1, 2], second-order reliability 
methods (SORM) [3-5], and multi-point approximation 
methods [6, 7]. Among the simulation-based methods, the 
Monte Carlo (MC) method is very simple and accurate. 
However, its computational cost is prohibitively high. For this 
reason, more efficient simulation-based techniques have been 
proposed [8-11]. Among them, the adaptive importance 
sampling (AIS) techniques have been popular [8, 9]. Also, 
multi-modal importance sampling methods have been proposed 
where the sampling density emphasizes all important sample 
points in the failure domain, each in proportion to the true 
probability density [10, 11]. A combination of analytical and 
simulation-based methods has also been used [12]. The 
analytical methods are generally simple and efficient, but for 
complex problems, their accuracy cannot be guaranteed. In 
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simulation-based methods, the accuracy can be controlled but 
the efficiency is generally not satisfactory.  

Various math-based methods can be used to estimate the 
probability of failure using defined limit state functions, which 
separate the failure and the safe regions. In the probabilistic 
analysis of complex engineering systems, the limit state 
functions are in general, implicit and nonlinear. Furthermore, 
each function evaluation is usually computationally expensive. 
For these reasons, it is important to choose a method that 
minimizes the number of function evaluations in estimating the 
probability of failure without sacrificing accuracy. 

In this paper, an accurate and efficient computational 
method is presented for reliability assessment of engineering 
systems. It provides a substantial improvement over our 
previous work in [13] because it can address problems with 
multiple MPPs with disjoint failure domains. It can also be 
used for system reliability assessment of problems with 
multiple limit states. The method can easily handle implicit, 
nonlinear limit-state functions, with correlated or non-
correlated random variables, which are described by any 
probabilistic distribution. It is based on “accurate-on-demand” 
global and local metamodels (response surfaces) of the limit 
states which serve as indicators to determine the “failure” and 
“safe” regions. High accuracy of these metamodels is not 
needed away from the limit states because they are simply used 
as “failure” indicators. However, improved accuracy is 
necessary close to the limit states where sample points have a 
“low” absolute value. In this work, points with “low” limit-
state absolute value, define a transition region between the safe 
and failure regions. All samples in the transition region are 
identified, and more accurate local metamodels of each actual 
limit state are generated. The local metamodels are used to 
determine if the transition region points are in the safe or 
failure domains. Finally, a Monte Carlo simulation (MCS) 
calculates the probability of failure. 

If a limit state has multiple failure regions which may be 
even disjoint, or if multiple limit states exist due to a system 
reliability assessment, the transition region points may be 
grouped in clusters. A clustering technique is therefore, used to 
identify these groupings so that we can build local metamodels 
for each group. This is essential for handling multiple MPP 
problems which often exist in a variety of engineering 
applications such as vibratory problems, for example. Recently, 
some work has been reported for multiple MPP problems [14-
16]. 

Although different metamodeling techniques can be 
successfully used in this work, we have chosen the Cross-
Validated Moving Least Squares (CVMLS) [17] method. To 
construct a metamodel, a so-called “space-filling” sampling 
algorithm is needed. However, the commonly used algorithms 
such as Latin Hypercube (LH) and Optimal Symmetric LH 
(OSLH) sampling [18] among others, place most of the 
samples in the interior of the domain. To avoid this problem, 
we use a maximin “space-filling” sampling technique. We also 
use a Principal Component Analysis (PCA) [19] in order to 
 

address the problem dimensionality when generating the local 
metamodels. This makes the proposed method attractive for 
problems with a large number of random variables. Two 
numerical examples highlight the accuracy and efficiency of 
the proposed method.  

The proposed method is the first step towards developing a 
gradient-free, simulation-based (not analytical) reliability-based 
design optimization (RBDO) algorithm which can handle 
“noisy” limit state problems with multiple failure regions. 

DESCRIPTION OF PROPOSED METHOD 
It has been mentioned that in simulation-based reliability 

methods, we need the sign of the limit state function value, and 
not its actual function value. This is achieved in this paper by 
constructing approximate metamodels which can efficiently 
identify the safe (high value) and failure (low value) regions. A 
similar idea has been reported in [14] using an indicator 
response surface and in [15] using discriminative sampling. 

The entire sampling region is divided into a safe region, a 
failure region and a transition region between the safe and 
failure regions. The safe and failure regions are easily 
identified using an approximate global metamodel ˜ g G x( ) which 
is also used to identify the transition region. Details are 
provided in section 2.4.  

The samples in the transition region are evaluated using a 
more accurate metamodel. For that, a local metamodel ˜ g L x( ) is 
constructed. Good accuracy is ensured by 1) sampling in a 
lower dimensional space, obtained using PCA, 2) by a series of 
refinements using a “space-filling” algorithm which places 
samples very close to the limit state within the transition region 
and 3) by constructing a metamodel of a small, local region. 
The transition region includes all samples x, such that 

( ) ),(~
ulG hhg ∈x  where hu and hl are the upper and lower bound 

values respectively, estimated using the global metamodel. 
An efficient “space-filling” sampling is used based on a 

maximin distance algorithm, which efficiently selects a few 
samples with “space-filling” properties, from a previously 
selected large MC set of samples. Details are presented in 
section 2.1.  

The probability of failure fp  is calculated as, 

∑
=

==
N

j
j

f
f I

NN
n

p
1

)(1 x     (1) 

where Njj ,...,1, =x  is a MC sample, fn is the number of 

failures out of N samples, and )(xI  is an indicator function. If 
x is in the safe region ( ( ) uG hg >x~ ) or in the transition region 
( ( ) ),(~

ulL hhg ∈x  and ( ) 0~ >xLg ), I(x)=0. Also, if x is in the 
failure region ( ( ) lG hg <x~ ) or in the transition region 
( ( ) ),(~

ulL hhg ∈x  and ( ) 0~ <xLg ), I(x)=1. 
The efficiency in constructing a local metamodel of the 

transition region, is greatly enhanced by a dimension reduction 
technique using PCA. The samples in the transition region 
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exhibit geometric correlation because they are placed close to 
the limit state. This correlation is exploited using PCA. 
Assuming that each sample is k-dimensional, q principal 
directions, where q<k, are calculated which account for most of 
the variation in the location of all samples. Subsequently, 
samples are mostly spread only along the q principal directions 
instead of the original k dimensions. This addresses the so-
called “curse of dimensionality,” improving therefore, the 
efficiency of the local metamodel construction. Details are 
provided in sections 2.3 and 2.4. 

A MAXIMIN SAMPLING METHOD 
An efficient and accurate construction of a metamodel 

requires a so-called “space-filling” sampling algorithm. A 
variety of such algorithms have been reported in the literature 
including Latin Hypercube (LH) sampling and its variations 
such as randomized orthogonal arrays, symmetric LH 
sampling, optimal LH sampling and Optimal Symmetric LH 
(OSLH) sampling. OSLH has been extensively used [18] due 
its desirable uniform projection properties. However, OSLH 
has the tendency of placing most of the samples in the interior 
of the domain. This is especially true for moderate to high-
dimensional problems with a relatively small number of 
available samples. In such cases, the metamodel is forced to 
extrapolate in order to predict the response of a boundary point. 
Such a prediction is usually inaccurate. In this paper, we avoid 
this problem by using a sampling algorithm which places 
samples both on the boundary and the interior of the domain. 
Although this requires a larger number of samples, it is 
necessary from the accuracy point of view.  

We use an easy to implement maximin method in which 
the addition of new samples preserves by default, the “space-
filling” properties. This is a very important property which 
allows us to construct “converged” metamodels with a small 
number of samples. Convergence is practically achieved if the 
reconstructed metamodel after a few more samples are added, 
gives similar predictions with the previous version. Similar 
predictions are judged based only on the sign, and not the 
estimated actual value, of the limit state.    

Consider a design { }nnD xxx L,, 21=  which is 
composed of a collection of k-dimensional samples 

nik
i ,...,1, =ℜ∈x . A few judiciously selected samples from 

nD  define the maximin distance design D where, nDD ⊆ . Let 
( )vu,d  be the Eucledian distance between samples u and v, 

where D∈vu, . Design D simply maximizes the minimum 
inter-site distance ( )vu

vu
,min

,
d

D∈
, i.e. 

  
D

max ( )vu
vu

,min
,

d
D∈

.  (2) 

More information on maximin and minimax distance criteria is 
provided in [20, 21]. Ref. [22] discusses their use in metamodel 
construction. 

In this paper, the maximin sampling technique of Eq. (2) is 
implemented in a straightforward way. Assume that a design 
 

nD  of n, k-dimensional samples is available, consisting of n 
MC samples. Each of the k components of the n MC samples is 
normalized between zero and one in order to account for 
potentially different units. If x denotes the kth component, its 
normalized value is ( ) ( )LHL xxxxx −−= /* , where Lx  and Lx  
are the low and high values respectively, among all n samples. 

Point { }***
1

*
1 ki xxx LL=x , where kixi ,...,1,* =  is 

the mean *
ix  coordinate of all n normalized points, is first 

selected as a “seed” point. Then the distance of all n normalized 
points from *

1x  is calculated and the point  *
2x  with the largest 

distance is selected. Subsequently, the distances of the 
remaining (n-2) samples from both *

1x  and *
2x  are calculated 

and the point *
3x  with the maximum minimum distance is 

selected. The process is repeated m times in order to create the 
maximin distance design D with m samples. It should be noted 
that the method first places samples on the boundary of the 
domain. As more samples are created, they are placed in the 
interior of the domain providing therefore, a “space-filling” 
design. A very useful property of the method is that the addition 
of new samples preserves the “space-filling” properties of the 
new design. This is essential in order to keep the number of 
function evaluations low. 

DATA CLUSTERING 
Data clustering is a technique that is used to determine 

similarities in data and to segregate the data into groups based 
on those similarities.  In this paper, the data is sorted using a 
Euclidian distance measure.  Points that are in the same 
“neighborhood” are grouped together. For problems with 
multiple disjoint failure regions, clustering collects points into 
groups allowing us therefore, to create separate local 
metamodels for each failure region.  

Given a set of N points to be clustered, an N by N distance 

matrix is formed with elements d(x i, x j ) = (x i − x j )2
 

representing the Euclidian distance between points xi and xj. 
Subsequently, a hierarchical cluster tree is created using the 
following steps [23]. 

1. Assign each point to a cluster, so that N clusters are 
formed with one point each. The distance between the clusters 
is therefore, the same with the distance between the points they 
contain. 

2. Find the closest pair of clusters and merge them into a 
single cluster, so that we have one cluster less.  

3. Compute the distances between the new cluster and each 
of the old clusters.  

4. Repeat steps 2 and 3 until all points are potentially 
clustered into a single cluster of size N. There is obviously no 
point in having all N points grouped in a single cluster.  
However, after we have a complete hierarchical tree, k clusters 
can be formed by simply cutting the k - 1 longest links. 

Step 3 can be performed in different ways, which is what 
distinguishes single-linkage from complete-linkage and 
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average-linkage clustering. In single-linkage clustering, the 
distance between two clusters is equal to the shortest distance 
from any point of one cluster to any point of the other cluster. 
In this work, the single-linkage clustering is used. The 
described hierarchical clustering is also called agglomerative 
because it merges clusters iteratively. 

PRINCIPAL COMPONENT ANALYSIS 
Principal Component Analysis (PCA) [19] is a well known 

statistical method for finding trends in data.  It is a very popular 
technique for dimensionality reduction and is discussed at 
length in most texts on multivariate analysis. It has been used 
in many application areas including data compression, image 
analysis, visualization, pattern recognition, regression and time 
series prediction.  Here, PCA is used to perform a sort of 
dimension reduction by sampling only in identified important 
directions, and perturbing the sampled points in the 
unimportant directions.  This reduces the number of samples 
because the points do not need to evenly span each dimension. 

The PCA provides a linear projection which maximizes the 
variance in the projected space identifying therefore, the 
directions along which the data possesses the largest variation. 
For a set of N available k-dimensional samples Nnn ,...,1, =x , 
the q principal axes qjj ,...,1, =w  form a set of orthonormal 
axes onto which the retained variance under projection is 
maximum. It can be shown that the vectors jw  are defined by 
the q dominant eigenvectors corresponding to the largest 
eigenvalues jλ , of the sample covariance matrix 

[ ] ( )( ) NxxS T
n

n
n /−−=∑ xx , where x  is the data sample 

mean. They therefore, satisfy the relation [ ] jjjS ww λ= . The q 
principal components of the observed vector nx  are given by 
the vector 

 [ ] ( )xW n
T

n −= xy ,    (3) 
where [ ] [ ]qW www ,,, 21 L= . The variables jy  are 
uncorrelated such that the covariance matrix NT

n
n

n /yy∑  is 

diagonal with elements jλ . The value of ∑
k

jj λλ /  gives the 

proportion of variation explained by the jth principal 
component. Geometrically, the principal components are the 
axes of a new coordinate system obtained by rotating the axes 
of the original system. The new axes represent the directions of 
maximum variability. 

PCA is often used to reduce the dimension of a data set, 
replacing a large number of correlated variables with a smaller 
number of orthogonal variables which still contain most of the 
information in the original data set. In this work, Nnn ,...,1, =x  
includes all N samples of the transition region. 
 

ALGORITHM OF THE PROPOSED METHOD 
The beginning of section 2 provided an overview of the 

proposed method. This section provides all algorithmic details. 
The construction of an approximate global metamodel is 
described first (steps 1 through 7). Subsequently, a clustering 
technique is used which identifies potentially disjoint failure 
domains. The construction of local metamodels, including a 
series of refinements, is explained in steps 9 through 13. 
Finally, the probability of failure is calculated in step 14. 

1. Generate N MC samples according to the statistical 
distribution of all random variables. Eq. (4) [24] 
estimates N by keeping the error bound less than %ε  
with confidence level ρ . In this paper, we use 10=ε  
and 05.0=ρ .    

T
f

T
f

NP
P )1(

)
2

1(100% 1 −
−Φ= − ρε   (4) 

2. Using the maximin method of section 2.1, m samples 
are selected from the available N MC samples of step 1. 
Although m is kept small, it is at least equal to n+1 
where n is the number of variables.  

3. Calculate the limit state value for all m points of step 2 
and construct an approximate global metamodel 

( )xGg~ . A different global metamodel is constructed for 
each limit state. The choice of the metamodeling 
technique may slightly affect the efficiency of the 
proposed method. It is not however, vital to the success 
of the method. Note that ( )xGg~  covers only the 
“cloud” area of the MC samples from step 1.   

4. Use ( )xGg~  to predict the value of each limit state for 
the N MC samples.  

5. Identify the upper and lower limits hu and hl 
respectively, of the transition region.  The N values of 
step 4 are sorted in decreasing order. If Gg~max  and 

Gg~min  represent the maximum and minimum values, 
hu and hl are equal to ( )Gu gh ~maxη=  and 

( )Gl gh ~minη= , where η  is a predetermined small 
percentage, so that the number of points in the 
transition region is less than ten percent of N. By 
limiting the number of transition region points to less 
than ten percent of N, we can create a sufficiently small 
local metamodel with good accuracy, while keeping the 
number of required function evaluations low. The 
transition region includes all MC samples x so that 

( ) uGl hgh ≤≤ x~ . Their number is denoted by NT. It 
should be emphasized that NT includes the transition 
points from all limit states. 

6. Define the safe region and the failure region. The 
former includes all MC samples x so that ( ) uG hg >x~  
and the latter includes all MC samples with ( ) lG hg <x~ . 
The number of points in the failure region is Gn . For 
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the points in the safe and failure regions, the indicator
function is assigned a value of 0 and 1, respectively
(see Eq. 1).  

7. Add p more points to the m points of step 2, and go to
step 3. Repeat steps 3 to 6 until convergence is
achieved. We have convergence, if the number of
failure region points from step 6, does not change more
than ten percent between two successive iterations.
This “crude” convergence provides a compromise
between accuracy and efficiency for the approximate
global metamodels. It also defines the transition zone
with enough accuracy for the next steps.  Using Eq. (4)
and the estimated probability of failure, we can
determine if enough number of samples have been
generated.  If not, additional MC samples are
generated. 

At this point, we assume that the samples in the identified
safe and failure regions have indeed a positive and negative
value respectively. However due to the potentially low
accuracy of the approximate global metamodels from step 7,
we are not certain about the positive or negative sign of the
transition points. For this reason, local metamodels of the
transition region points are developed which are expected to be
more accurate because of their smaller domains. A clustering
technique determines the number of local metamodels. 

If a limit state has multiple failure regions or if multiple
limit states exist due to a system reliability assessment, the NT
transition points from all “converged” global metamodels of
step 7, may form clusters. The clustering technique of section
2.2 is then used in step 8 to identify potential clusters.  

8. Using all points in the transition region, clustering
groups them in k clusters.  Because we do not know the
number of existing clusters a priori, we start with a
relatively large number of clusters. Depending on how
many points are grouped in each of the k clusters, we
easily determine the number of existing clusters ck
where kkc < . Subsequently, clustering is repeated with
only ck  clusters.  

Even the most accurate metamodel can not accurately
predict the sign of points very close to the limit state. To
alleviate this problem, we refine each local metamodel by
adding samples close to the limit state. For a balance between
accuracy and efficiency (computational effort) of the local
metamodels, considering the “curse of dimensionality,” we also
use a PCA-based, dimension reduction measure according to
section 2.3.  

The NT points in the transition region (see step 5) are
expected to be along the limit state(s), exhibiting therefore, a
geometric correlation due to their proximity to a limit state.
PCA exploits this correlation. It should be noted that the less
nonlinear the limit state is around the most probable point
(MPP), the stronger the correlation is. The PCA will define a
new, low-dimensional coordinate system for the transition
region points using the dominant principal coordinates (see
 

section 2.3). The dimension reduction will allow us to build the 
local metamodels with fewer “space-filling” samples. Steps 9 
through 13 describe how a “converged” local metamodel is 
obtained for the kth cluster. 

9. Perform a PCA using the NT(k) transition region 
samples of the kth cluster. All original NT(k) points are 
then projected onto the dominant directions and their 
coordinates are normalized between zero and one.  

The geometric variation of points along the neglected, 
insignificant principal coordinates is very low. However, it has 
a strong influence on the probability of failure. For example, 
two points which are geometrically very close but in the 
opposite sides of a limit state, will have a positive and negative 
value, respectively. To account for this essential effect, the 
samples of step 9 are randomly perturbed along the 
insignificant principal coordinates.  

It has been mentioned in section 2.1, that the maximin 
algorithm chooses among a large number of n samples which 
are normalized between zero and one. The projected NT(k) 
points onto the dominant principal coordinates are normalized 
between zero and one and subsequently, perturbed along the 
insignificant principal coordinates between zero and 0.1. When 
sampling is therefore performed, the samples will “space-fill” 
the significant coordinate space but will also vary 
geometrically along the insignificant coordinates. 

Fig. 1 shows an example of a two-dimensional space 
where the horizontal and vertical directions are significant and 
insignificant, respectively. The hash marks indicate transition 
region points which are projected onto the horizontal direction 
and subsequently, perturbed along the vertical direction. The 
maximin algorithm was used to select 30 points, indicated by 
the diamonds, which “space-fill” the entire domain. Because 
the distance between points is uniform, they are mostly spread 
along the significant direction, providing however, some 
variation along the insignificant direction. 

 
Figure 1. Hypothetical example with one significant 

and one insignificant principal direction 
 

10. Perturb the projected NT(k) transition points from step 
9, along each insignificant direction and normalize 
their coordinates between 0 and 0.1. A uniformly 
distributed random perturbation is used. Specifically 
for each point, the coordinates in the dominant 
directions are left unchanged and the coordinates in the 
insignificant directions are discarded and replaced with 
a uniformly distributed random number between 0.0 
and 0.1. By decreasing the magnitude in the 
insignificant directions, the maximin approach to select 
points in the next step will mainly fill the space in the 
dominant directions. 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2007/48078/1135/2680270/1135_1.pdf by U

niversity of Edinburgh user on 15 M
arch 2024
5 Copyright © 2007 by ASME 



11. A “converged” local metamodel of the NT(k) transition 
points is built for each limit state using the iterative 
process of steps 3 through 7. Points are successively 
selected from the perturbed NT(k) points of step 10, 
using the maximin approach. At each iteration, the 
current version of the local metamodel is used to 
evaluate all NT(k) points after they are transformed 
back to the original coordinates, and identify the 
number mm(k) of the failed points; i.e points x with 

( ) 0~ <xLg . Convergence is achieved if mm(k) does not 
change more than 5% from the previous iteration. A 
“converged” local metamodel is achieved with ( )knL  
points. 

12. The converged local metamodel from step 11 is used to 
identify ( )kNTL  points x from the group of the NT(k) 
transition points, so that 
( ) ( ) ( )LLL ggg ~min~~max αα ≤≤ x , a=0.1. These points 

are located very close to the limit state having 
therefore, a small absolute value. 

13. At this point, a series of refinements for each local 
metamodel is performed. The maximin approach is 
used to identify m out of the ( )kNTL  points of step 12 
which are added to the existing ( )knL  points of step 11, 
and the local metamodel is updated. Again, all NT(k) 
points are evaluated using the updated local 
metamodels and a new number mm(k) of failed points 
is identified. The process is repeated by adding m more 
points and updating the local metamodels, until the 
number mm(k) is converged within a relative error of 
1% from the previous iteration. 

14. Finally the probability of failure is calculated as 

( )

N

nkmmn

N

I
p k

oG

N

j
j

f

∑∑ ++
== =1

)(x
, (5) 

by dividing the overall number of failures by the 
number N of the original MC samples. In Eq. (5), no 
represents failures among potential transition points 
which did not belong to any of the identified main 
clusters. Actual function evaluations are used for these 
points. 

 

NUMERICAL EXAMPLES 
In this section, the accuracy and efficiency of the proposed 

method are demonstrated with two examples; a vibration 
absorber and a two-bar bracket.  

Example 1: A Vibration Absorber  
A tuned damper system is shown in Figure E1. The system 

consists of an original system and a vibration absorber. For 
simplicity, the original system is assumed to have a single 
degree of freedom and is subject to a harmonic excitation 
 

( ) )cos( ttF ⋅= ω . The absorber is attached to the original 
system in order to reduce its vibration amplitude. 

 
 

absorber 

original 
system 

2, nm ω

1, nM ω

)cos( tF ω=

y
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Figure 2. Tuned vibration absorber 
 
The amplitude of the original system is a function of four 

parameters. In this example, we normalized it by the amplitude 
of its static response as follows  

2
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In Eq. (6), R is the mass ratio of the absorber to the original 
system, ς  is the damping ratio of the original system, and 1β  
and 2β  are the ratios of the natural frequency of the original 
system and vibration absorber with respect to the excitation 
frequency, respectively. It is assumed that the absorber does not 
provide additional damping to the overall system (see Fig. 2). 
For illustration purposes, R and ς  are treated as deterministic 
variables with values R=0.01 and ς =0.01 respectively. Only 

1β  and 2β  are random variables. They are both assumed 
normally distributed with mean 1.0 and standard deviation 
0.025. 

The objective of the absorber is to reduce the risk of the 
normalized amplitude ),( 21 ββy  being larger than 28, taking 
into account the uncertainties in the parameters. Therefore, the 
limit state equation is ),(28),( 2121 ββββ yg −= .  Fig. 3 shows 

),( 21 ββy , indicating the existence of two disjoint failure 
domains.   
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Figure 3. Plot of the normalized amplitude y vs. 1β  

and 2β  
 
One hundred thousand MC samples (N=100,000) are 

generated using the ( )025.0,1~1 Nβ  and ( )025.0,1~2 Nβ  
distributions (step 1 of section 2.4). If we do not have an 
estimate of the probability of failure, we use a relatively “high” 
number of samples.  In this problem we initially generated 
100,000 samples.   They are indicated by small dots in Fig. 4.  
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Figure 4. Samples for vibration absorber example 

 
A global metamodel is first generated using the iterative 

process of steps 2 through 7. CVMLS metamodels are created 
progressively with m=5 (step 2) until convergence is achieved. 
The maximin method of section 2.1 selects the points from the 
100,000 MC samples. The selected points for m=20, 30, and 40 
are indicated in Fig. 4 with triangles, squares and filled circles, 
respectively. As points are added, we increasingly “space fill” 
the design space. The intent is to use a minimum number of 
points and thus, function evaluations without substantial loss of 
accuracy. Global metamodels are generated and subsequently, 
used to predict the limit state value for all 100,000 MC samples 
(step 4). The safe, failure and transition regions are identified 
according to steps 5 and 6. Table 1 summarizes the number of 
points in each region for different number of selected points m. 
 
 
 

 

Table 1. Global metamodel convergence for vibration 
absorber 

1,98460097,41645

1,82656397,61150

2,07851497,40840

3181599,66735

5321799,45130

59099,94125

13099,98720

Number of 
Transition 

Points

Number of 
Failed Points 

(NG )

Number of 
Safe Points

Number of 
Samples

(m)

1,98460097,41645

1,82656397,61150

2,07851497,40840

3181599,66735

5321799,45130

59099,94125

13099,98720

Number of 
Transition 

Points

Number of 
Failed Points 

(NG )

Number of 
Safe Points

Number of 
Samples

(m)

 
 

According to step 7, convergence of the global metamodel 
is achieved with m=50. The 563 failure points are within 10% 
of the 600 failure points of the previous iteration (m=45). 
Therefore, Gn  is equal to 563 (see step 6) and NT is equal to 
1826 (see step 5). Both these values are listed in the last row of 
Table 1. For the definition of the transition region, we have 
used 20.0=η  in this example (see step 5 of algorithm). 

At this point, an approximate global metamodel has been 
obtained with “accuracy-on-demand.” Although it can not 
accurately predict all successes and failures among the 100,000 
MC samples, it is accurate enough to ensure that all safe 97,611 
samples of Table 1 are indeed safe and the 563 samples are 
indeed failures. It simply does not have the necessary accuracy 
to determine if the NT=1826 transition samples are in the safe 
or failure domains. Also we do not know yet, if we have 
multiple disjoint failure regions and therefore, multiple 
transition regions. Now we can determine if an adequate 
number of samples were used in estimating the probability of 
failure. Based on the estimated probability of failure of 

00563.0000,100
563 ==fP , the required number of samples 

according to Eq. (4), is less than 70,000. Because we initially 
used 100,000 samples, no additional MC points are required. 

After a converged global metamodel is obtained and used 
to segregate the N=100,000 samples into safe, unsafe and 
transition points, a cluster analysis is performed using the NT = 
1826 transition points, according to step 8 of the algorithm. It is 
important to also confirm that we have not selected an 
excessive number of points in the transition zone.  According to 
step 5, the number of transition points NT must be less than 
10% of N. In our case, NT = 1826 is only 1.8% of N = 100,000.  

We initially use a large number of clusters in order to make 
sure we identify all existing clusters. In this example, we used 
10 clusters. Fig. 5 shows the number of points in each cluster. 
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Figure 5. Clusters for vibration absorber 

 
It is clear that there are only two clusters containing the 

majority of the transition points. This is an indication of the 
existence of two disjoint failure regions. Fig. 6 shows the 
points in the ten clusters indicating the existence of only two 
dominant clusters.   
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Figure 6. samples in each cluster for vibration 

absorber 
 

Based on this observation, clustering is repeated using only 
two clusters. Out of the 1826 transition points, the first cluster 
includes 710 points and the second cluster includes the 
remaining 1116 points. A local metamodel will be created for 
each of the two clusters in order to identify the “correct” 
number of failures for each failure region.  The local 
metamodels will be more accurate than the original 
approximate global metamodel. 

Based on step 9, a PCA is performed using the 710 
transition points of the first cluster in an effort to reduce the 
problem dimensionality. Fig. 7 shows the two principal 
coordinates and the transition points.  
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Figure 7. Transition region points and principal 

coordinates for vibration absorber 
 

The minimum and maximum value of the 710 transition 
points along the two principal coordinates, have been also 
identified. They define the indicated rectangle. The two 
eigenvectors of the covariance matrix define the two principal 
coordinates. The corresponding eigenvalues are equal to 

41087.2 −×  and 51095.4 −× , respectively. The first eigenvalue 
is an order of magnitude larger than the second, indicating that 
there is sizeable scatter of the 710 points along the first 
principal coordinate (see Fig. 7). In this example, we will 
neglect the second coordinate.  

Based on steps 9 and 10, the 710 transition points are 
projected onto the first principal coordinate and then perturbed 
randomly along the second. Fig. 8 shows the perturbed points 
(small dots). They are now more uniformly placed within the 
dashed rectangle. It also shows the original transition points 
(triangles) before they are perturbed along the second 
coordinate. 
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Figure 8. Perturbed transition region points for 

vibration absorber 
 

A local metamodel is subsequently, built according to step 
11. The maximin algorithm is used to successively select m=5 
points (starting from 20 points) from the perturbed group of 
Fig. 6, and a local metamodel is built using the CVMLS 
algorithm. A converged local metamodel is achieved with 

Ln =45 points using the 5% stopping criterion of step 11. The 
selected 45 points are shown in Fig. 8 with diamonds. Using 
the converged local metamodel, a group of LNT =286 points 
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with a small absolute value (close to limit state) has been 
identified (step 12).  Convergence details of the local 
metamodel are shown in Table 2. 

 
Table 2. Local metamodel convergence for vibration 

absorber (1st cluster) 

71012958145

71013157940

71013857235

71015955130

7108362725

71013557520

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

71012958145

71013157940

71013857235

71015955130

7108362725

71013557520

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 

The converged local metamodel from step 11 is used to 
evaluate all NT=710 points in the first cluster and identify the 
failure points. Subsequently according to step 13, a few 
refinements of the local metamodel are obtained by adding m=5 
points from the LNT  group. Each refined local metamodel is 
then used to evaluate all 710 points and identify the number of 
failures. The process is repeated until convergence is achieved. 
The results are summarized in Table 3. At convergence, m=30 
and the number of failures is mm=147. There is a relative error 
of less than 1% from the 148 failures of the previous iteration 
(m=25). 

 
 

Table 3. Refinement of local metamodel for vibration 
absorber (1st cluster) 

71014756330

71014856125

71015255820

71014656415

71014956110

7101315795

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

71014756330

71014856125

71015255820

71014656415

71014956110

7101315795

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 

A local metamodel is also built for the second cluster and 
refined for improved accuracy. The results are shown in Tables 
4 and 5. 

 
 
 
 
 
 
 
 

 

 

Table 4. Local metamodel convergence for vibration 
absorber (2nd cluster) 

1,11627384340

1,11626685035

1,11623088630

1,116861,03025

1,1161001,01620

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,11627384340

1,11626685035

1,11623088630

1,116861,03025

1,1161001,01620

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 

 
Table 5. Refinement of local metamodel for vibration 

absorber (2nd cluster) 

1,11626585130

1,11626784925

1,11627584120

1,11624487215

1,11625186510

1,1162588585

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,11626585130

1,11626784925

1,11627584120

1,11624487215

1,11625186510

1,1162588585

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 

The probability of failure, according to step 14 is 

( )
00975.0

100000
265147563

2

1 =
++

=
+

=
∑
=

N

kmmn
p k

G

f
 where Gn  = 

563 is the number of failures from the global metamodel, 
mm(1)=147 and mm(2)=265  is the number of failures from the 
local metamodels of the two clusters. Note that no in Eq. (5), is 
equal to zero in this example. The number of function 
evaluations is 50 (global metamodel) +45 (local metamodel for 
1st cluster) + 70 (local metamodel for 2nd cluster) = 165. For 
comparison purposes, a traditional Monte Carlo simulation was 
also conducted using the same N=100,000 samples resulting in 
a probability of failure of 00992.0=fp .  

 

Example 2: A Two-Bar Bracket  
The two-bar bracket problem (Fig. 9) of this section is 

adapted from [25]. A variation of the same problem has been 
also considered in a reliability-based design study in [26]. The 
objective is to support a force W without structural failure. The 
force is applied at an angle θ . The height and the base width of 
the bracket are h and s respectively. The two bars have a 
circular cross-section with outer and inner diameters of od  and 

id , respectively.  
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θ

h

di

do
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θ

h
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do

 
Figure 9. Two-bar bracket 

 
Under the load W, bar one (left side) is always in 

compression. However, bar 2 (right side) can be in either 
tension or compression depending on the angle θ . Failure is 
considered if the tensile or compressive stress in either bar is 
greater than the material yield strength. Therefore, we have 
three failure criteria (limit state functions) as follows [43] 

 
( )

( ) 0cos2sin5.0
2 2
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   (9) 

 
where 1S  and 2S are the material yield strength for bar 1 and 
bar 2, respectively. The force W is assumed deterministic with 
W=31 kN. The remaining nine parameters are assumed 
normally distributed with ( )1,30~ Ndoi , ( )1,20~ Ndii  for 
i=1,2, ( )5,100~ Nh , ( )5,100~ Ns , ( )1,59~ Nθ , 

( )25,200~1 NS , ( )25,100~2 NS  where od , id , h and s are in 
mm, θ  is in degrees and 21 , SS  are in GPa. Note that we have 
assumed that bar 1 and bar 2 are made of different materials 
with different yield strength. This example represents a series 
system reliability assessment because there are multiple failure 
criteria. The system probability of failure is defined as 









≤∪≤∪≤= 000 321 GGGPPf

. (10) 

The first step in estimating the probability of failure is to 
generate a large number of Monte Carlo samples.  In this 
example, N = 200,000 samples are initially generated according 
to the statistical distributions of the nine random parameters.  

Using the maximin sampling method, 30 points are 
selected from N and an approximate global metamodel is 
created for each limit state. The metamodels are then used to 
predict the limit state values for all 200,000 MC samples (step 
4).  It was found that 199,497 points are safe, 39 points are 
unsafe and 464 points are in the transition zone. The safe, 
 

failure and transition regions are identified according to steps 5 
and 6. As in the previous example, the global metamodels are 
generated using the iterative process of steps 2 through 7. 
CVMLS metamodels are progressively created starting with 
m=30 (step 2) and adding 10 points until convergence is 
achieved. The maximin method selects the points from the 
200,000 MC samples. Table 6 summarizes the number of points 
in each region for different number of selected points.  
According to Eq. (10), a point is in the failure or safe regions if 









≤∪≤∪≤ 000 321 GGG  or 









≤∩≤∩≤ 000 321 GGG , respectively. Also, a point is 

in the transition region if it belongs to the transition region of 
any of the three limit states.   

 
Table 6. Convergence of global metamodels for two-

bar bracket 

41042199,54860

39739199,56450

41033199,55740

46436199,49730

Number of 
Transition 

Points

Number of 
Failed Points 

(NG )

Number of 
Safe Points

Number of 
Samples

(m)

41042199,54860

39739199,56450

41033199,55740

46436199,49730

Number of 
Transition 

Points

Number of 
Failed Points 

(NG )

Number of 
Safe Points

Number of 
Samples

(m)

 
 
As shown in the last row of Table 6, the global metamodels 

have converged with m=60. The 42 failure points with m=60 
are within 10% of the 39 failure points of the previous iteration 
(m=50). Based on the converged global metamodels, we have 
199,548 safe points, Gn =42 failure points and NT=410 points 
in the transition region. For the definition of the transition 
region, we have used 10.0=η  (see step 5 of algorithm).   

At this point, an initial estimate of the probability of failure 
is obtained as fP  = 42/200,000 = 0.00021. Using this estimate 
in Eq. (4), a total of 1.4 million samples are needed. Therefore, 
1.2 million additional samples are generated and evaluated 
using the global metamodels. The total number of safe and 
failed points is equal to 1,396,758, and Gn  = 334 respectively, 
and the number of points in the transition region is NT = 2,908.   

Using the NT = 2,908 points, the clustering method of step 
8 identified two clusters of 1,351 and 1,505 points, 
respectively.  Fig. 10 shows the number of points in each 
cluster. A maximum of five clusters was requested. In addition 
to the two clusters, there are 52 points which do not belong to 
either cluster.  These points will be evaluated using the actual 
limit states.  
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Figure 10. Clusters for two-bar bracket 

 
A principal component analysis (PCA) is performed using 

the 1,351 points in the first cluster to determine if a dimension 
reduction can be achieved.  The eigenvalues of the data 
covariance matrix (see section 2.3) are 

[ ]6.622.475.2651.11911.1040.1957.0930.0076.0=λ . 
Based on their relative magnitude, the first five coordinates are 
considered insignificant. Therefore, the 1,351 transition points 
are projected onto the four principal coordinates and then 
perturbed randomly along the five insignificant coordinates. 
Subsequently, the maximin sampling method selects points 
from the perturbed group of 1,351 points in order to build local 
metamodels (see steps 11 through 13).  

Table 7 shows the convergence history of the local 
metamodels. Convergence has been achieved with m=50 
samples indicating the existence of 9 failures out of the 1,351 
points. The local metamodels are then used to identify 

LNT =237 points (see step 12) which are close to the limit states 
and a few refinements are performed using maximin to select 
additional samples from the LNT  group.  Table 8 shows the 
convergence of the local metamodels after the refinements with 
mm=14 failure points. 

 
 

Table 7. Convergence of local metamodels for two-
bar bracket (1st cluster) 

1,35191,34250

1,35191,34240

1,351141,33730

1,351181,33320

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,35191,34250

1,35191,34240

1,351141,33730

1,351181,33320

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 

 
 
 
 

 

Table 8. Refinement of local metamodels for two-bar 
bracket (1st cluster) 

1,351141,33720

1,351141,33710

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,351141,33720

1,351141,33710

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 
The procedure to build local metamodels is repeated for 

the transition points in the second cluster. In this case, the 
eigenvalues from PCA are  

[ ]5283976.244.2306.100.1950.0822.0086.0=λ  
indicating again five insignificant coordinates. Tables 9 and 10 
show the convergence history of the local metamodels, before 
and after refinement.  

 
Table 9. Convergence of local metamodels for two-

bar bracket (2nd cluster) 

1,505651,44050

1,505631,44260

1,505711,43440

1,505971,40830

1,50521,50320

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,505651,44050

1,505631,44260

1,505711,43440

1,505971,40830

1,50521,50320

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
 
 
 

Table 10. Refinement of local metamodels for two-bar 
bracket (2nd cluster) 

1,505621,44320

1,505621,44330

1,505601,44510

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

1,505621,44320

1,505621,44330

1,505601,44510

Number of 
Points in 
Cluster

Number of 
Failed Points 

(mm)

Number of 
Safe Points

Number of 
Samples (m)

 
   
Finally, the probability of failure is 

( )
000295.0

000,400,1
413

000,400,1
36214334

2

1 =
+++

=
++

=
∑
=

N

nkmmn
P

o
k

G

f

, where no=3 failures identified among the 52 transition points 
which did not belong to any of the two clusters. For 
comparison purposes, a traditional MC analysis using the same 
1.4 million samples resulting in 398 failures and a probability 
of failure 00028428.0

000,400,1
398

=fP .  The proposed method 

predicted the probability of failure with a 

%87.3100
000284.0

000284.0000295.0
=×

−  error using only 272 

function evaluations (60 for global metamodel, 50+20 for local 
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metamodel of first cluster, 60+30 for local metamodel of 
second cluster, 52 for points not belonging to clusters). 

SUMMARY AND CONCLUSIONS 
A Monte Carlo reliability assessment methodology has 

been presented for systems with multiple, disjoint failure 
regions and multiple most probable points. The method has all 
the advantages of Monte Carlo simulation but it is considerably 
more efficient. It uses a combination of approximate or 
“accurate-on-demand,” global and local metamodels which 
serve as indicators to determine the failure and safe regions. A 
maximin “space-filling” sampling technique is used to 
construct the metamodels. A principal component analysis 
addresses the problem dimensionality making therefore, the 
method attractive for problems with a large number of random 
variables. A vibration absorber example with disjoint failure 
regions and a two-bar bracket example have been used to 
demonstrate that the proposed method has similar accuracy 
with the traditional MC simulation but it is substantially more 
efficient. In future research, the proposed method will be used 
in a gradient-free, simulation-based (not analytical) reliability-
based design optimization algorithm which can handle “noisy” 
limit state problems with multiple failure regions. 
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